organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Phenyl-1-(p-tolyl)-1H-benzo[f]chromene benzene hemisolvate

Meng Wei Xue

Biochemical and Environmental Engineering College, Nanjing Xiaozhuang University, Nanjing 210017, People's Republic of China Correspondence e-mail: xmw1102@sina.com

Received 29 December 2010; accepted 11 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.080; wR factor = 0.144; data-to-parameter ratio = 13.3.

The title compound, C₂₆H₂₀O·0.5C₆H₆, was obtained from condensation reaction of 2-naphthol, 4-methylbenzaldehyde and phenylmethanamine. The naphthyl ring system is orented at dihedral angles of 84.11 (1) and 19.33 (8) $^{\circ}$ with respect to the mean planes of the two benzene rings.

Related literature

For applications of Betti-type reactions, see: Wang et al. (2005). The reaction of substituted phenols and aldehydes under controlled conditions has been used to build up a compound with two chiral centers, see: Gardiner & Raston (1997); Gutsche & Nam (1998). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{26}H_{20}O \cdot 0.5C_6H_6$	V = 2116.5 (9) Å ³
$M_r = 387.47$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.653 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 5.9049 (12) Å	T = 293 K
c = 29.974 (8) Å	$0.20 \times 0.20 \times 0.20$
$\beta = 109.08 \ (3)^{\circ}$	

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.813, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.080$ $wR(F^2) = 0.144$ S = 0.933623 reflections

14405 measured reflections 3623 independent reflections 1438 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.148$

0.20 mm

273 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation (grant No. 04KJD150112) of the Jiangsu Provincial Education Department.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2252).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Gardiner, M. & Raston, C. (1997). Coord. Chem. Rev. 166, 1-34.
- Gutsche, C. D. & Nam, K. C. (1998). J. Am. Chem. Soc. 110, 6153-6162.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. A70, 1897-1900.

Acta Cryst. (2011). E67, o1668 [doi:10.1107/S1600536811001668]

3-Phenyl-1-(p-tolyl)-1H-benzo[f]chromene benzene hemisolvate

M. W. Xue

Comment

The reaction of substituted phenols and aldehydes under controlled conditions has been used to build up supramolecular compounds, the most important ones being calixarenes (Gardiner & Raston *et al.* 1997, Gutsche & Nam *et al.* 1998). 2-Naph-thol reacts with aromatic aldehydes to produce 14-aryl-14*H*-dibenzo[a,j]xanthenes, which could be used as anti-inflamatory agents. Here we report the synthesis and crystal structure of the title compound. The asymmetric unit of the compound contains a benzene solvent molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen *et al.* 1987).

Rings of the two benzenes and naphthol are, of course, planar. The dihedral angles between rings A (C1–C10) and B (C12–C17), and between rings A and C (C21–C26), are 84.11 (1) and 19.33 (8), respectively. The orientation of ring B with respect to the mean planes of the two groups containing rings A and C, may be described by the dihedral angles of 84.11 (1) and 76.82 (2), respectively. The molecules are stabilized by intramolecular C—H…O hydrogen bonding (Table 1). Intermolecular attractions are only on the order of Van der Waals forces.

Experimental

4-Methylbenzaldehyde (1.8 g, 0.015 mol) and phenylmethanamine (1.605 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-4:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in b enzeneat room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3-Phenyl-1-(p-tolyl)-1H-benzo[f]chromene benzene hemisolvate

Crystal data

C26H20O·0.5C6H6 $M_r = 387.47$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 12.653 (3) Å b = 5.9049 (12) Å c = 29.974 (8) Å $\beta = 109.08 \ (3)^{\circ}$ $V = 2116.5 (9) \text{ Å}^3$ Z = 4

Data collection

Rigaku Mercury2 diffractometer	3623 independent reflections
Radiation source: fine-focus sealed tube	1438 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.148$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 24.8^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
CCD_Profile_fitting scans	$h = -14 \rightarrow 13$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -6 \rightarrow 6$
$T_{\min} = 0.813, \ T_{\max} = 1.000$	<i>l</i> = −35→35
14405 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.080$	H-atom parameters constrained
$wR(F^2) = 0.144$	$w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 1.9P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
3623 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
273 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0054 (6) methods

F(000) = 820 $D_{\rm x} = 1.216 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3623 reflections $\theta = 2.6 - 24.8^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.20 \times 0.20 \times 0.20 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1992 (2)	1.0645 (5)	0.23039 (9)	0.0549 (8)
C5	-0.1441 (4)	1.0682 (8)	0.16184 (15)	0.0502 (12)
C10	-0.0792 (4)	0.8897 (8)	0.15186 (14)	0.0464 (12)
C1	0.0391 (4)	0.8852 (7)	0.17364 (14)	0.0433 (11)
C11	0.1128 (3)	0.7117 (7)	0.16231 (13)	0.0464 (12)
H11A	0.0762	0.5639	0.1601	0.056*
C12	0.1302 (3)	0.7595 (8)	0.11524 (14)	0.0452 (11)
C2	0.0853 (4)	1.0539 (8)	0.20516 (14)	0.0468 (12)
С9	-0.1366 (4)	0.7168 (8)	0.12064 (15)	0.0591 (13)
H9A	-0.0957	0.5997	0.1135	0.071*
C3	0.0233 (4)	1.2317 (7)	0.21550 (14)	0.0497 (12)
H3A	0.0589	1.3428	0.2372	0.060*
C6	-0.2621 (4)	1.0666 (9)	0.13957 (16)	0.0664 (15)
H6A	-0.3047	1.1837	0.1455	0.080*
C4	-0.0887 (4)	1.2401 (8)	0.19354 (14)	0.0557 (13)
H4A	-0.1296	1.3606	0.1994	0.067*
C8	-0.2511 (5)	0.7169 (9)	0.10062 (16)	0.0689 (15)
H8A	-0.2870	0.5981	0.0811	0.083*
C13	0.1067 (4)	0.6008 (8)	0.08004 (16)	0.0673 (15)
H13A	0.0820	0.4582	0.0854	0.081*
C17	0.1694 (4)	0.9652 (8)	0.10589 (16)	0.0619 (14)
H17A	0.1881	1.0752	0.1294	0.074*
C15	0.1555 (4)	0.8569 (10)	0.02733 (16)	0.0649 (15)
C7	-0.3138 (4)	0.8968 (10)	0.10966 (17)	0.0737 (16)
H7A	-0.3910	0.9000	0.0952	0.088*
C14	0.1188 (4)	0.6477 (10)	0.03650 (17)	0.0752 (16)
H14A	0.1020	0.5365	0.0133	0.090*
C18	0.1597 (4)	0.9155 (10)	-0.02193 (15)	0.103 (2)
H18A	0.1856	1.0682	-0.0220	0.155*
H18B	0.0862	0.9012	-0.0446	0.155*
H18C	0.2098	0.8137	-0.0300	0.155*
C16	0.1819 (4)	1.0139 (9)	0.06301 (18)	0.0712 (16)
H16A	0.2086	1.1554	0.0582	0.085*

C27	0.5726 (5)	1.0641 (15)	0.4766 (2)	0.097 (2)
H27A	0.6217	1.1072	0.4609	0.117*
C28	0.5207 (6)	0.8584 (14)	0.4683 (2)	0.096 (2)
H28A	0.5347	0.7606	0.4466	0.115*
C29	0.4494 (5)	0.7940 (10)	0.4912 (3)	0.0953 (19)
H29A	0.4151	0.6528	0.4850	0.114*
C25	0.4963 (4)	1.0693 (9)	0.33788 (16)	0.0753 (16)
H25A	0.5136	1.1949	0.3577	0.090*
C26	0.3953 (4)	1.0623 (9)	0.30149 (15)	0.0639 (14)
H26A	0.3452	1.1819	0.2973	0.077*
C21	0.3688 (4)	0.8798 (8)	0.27155 (15)	0.0491 (12)
C23	0.5458 (4)	0.7128 (9)	0.31572 (17)	0.0740 (16)
H23A	0.5962	0.5933	0.3204	0.089*
C24	0.5710 (4)	0.8955 (10)	0.34533 (16)	0.0727 (16)
H24A	0.6381	0.9011	0.3702	0.087*
C22	0.4449 (4)	0.7045 (8)	0.27852 (15)	0.0615 (14)
H22A	0.4288	0.5804	0.2583	0.074*
C20	0.2610 (4)	0.8690 (8)	0.23220 (14)	0.0444 (11)
C19	0.2214 (4)	0.7014 (8)	0.20194 (14)	0.0503 (12)
H19A	0.2636	0.5696	0.2056	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.045 (2)	0.052 (2)	0.063 (2)	0.0056 (18)	0.0123 (16)	-0.0046 (16)
C5	0.052 (4)	0.057 (4)	0.044 (3)	0.002 (3)	0.019 (3)	0.012 (2)
C10	0.054 (3)	0.050 (3)	0.037 (3)	-0.004 (3)	0.017 (2)	0.006 (2)
C1	0.051 (3)	0.041 (3)	0.041 (3)	0.005 (2)	0.020 (2)	0.002 (2)
C11	0.054 (3)	0.045 (3)	0.042 (3)	-0.003 (2)	0.019 (2)	-0.001 (2)
C12	0.045 (3)	0.046 (3)	0.045 (3)	0.002 (2)	0.015 (2)	-0.002 (2)
C2	0.051 (3)	0.050 (3)	0.044 (3)	0.005 (3)	0.023 (3)	0.004 (2)
C9	0.051 (4)	0.072 (4)	0.053 (3)	0.000 (3)	0.016 (3)	0.009 (3)
C3	0.058 (3)	0.047 (3)	0.045 (3)	0.005 (3)	0.017 (2)	0.004 (2)
C6	0.053 (4)	0.087 (4)	0.058 (3)	0.017 (3)	0.016 (3)	0.015 (3)
C4	0.064 (4)	0.058 (4)	0.048 (3)	0.013 (3)	0.023 (3)	0.003 (3)
C8	0.069 (4)	0.071 (4)	0.061 (3)	-0.008 (3)	0.013 (3)	0.010 (3)
C13	0.087 (4)	0.060 (4)	0.063 (3)	-0.004 (3)	0.036 (3)	-0.010 (3)
C17	0.081 (4)	0.055 (4)	0.054 (3)	-0.011 (3)	0.028 (3)	-0.006 (3)
C15	0.059 (4)	0.093 (5)	0.047 (3)	0.013 (3)	0.024 (3)	0.005 (3)
C7	0.057 (4)	0.094 (5)	0.065 (4)	-0.003 (4)	0.013 (3)	0.015 (3)
C14	0.081 (4)	0.092 (5)	0.053 (3)	-0.009 (3)	0.022 (3)	-0.024 (3)
C18	0.101 (5)	0.157 (6)	0.061 (4)	0.027 (4)	0.040 (3)	0.025 (4)
C16	0.088 (4)	0.068 (4)	0.069 (4)	0.002 (3)	0.041 (3)	0.011 (3)
C27	0.082 (5)	0.116 (6)	0.093 (5)	-0.011 (5)	0.027 (4)	0.016 (4)
C28	0.080 (5)	0.112 (7)	0.093 (5)	-0.003 (4)	0.026 (4)	-0.014 (4)
C29	0.082 (5)	0.082 (5)	0.111 (6)	-0.018 (4)	0.017 (4)	-0.002 (4)
C25	0.075 (4)	0.085 (5)	0.059 (4)	0.001 (4)	0.012 (3)	-0.012 (3)
C26	0.060 (4)	0.070 (4)	0.053 (3)	0.014 (3)	0.007 (3)	-0.006 (3)

C21	0.049 (3)	0.056 (3)	0.047 (3)	0.009 (3)	0.023 (2)	0.007 (3)
C23	0.059 (4)	0.095 (5)	0.063 (4)	0.020 (3)	0.012 (3)	0.003 (3)
C24	0.054 (4)	0.110 (5)	0.047 (3)	0.003 (4)	0.007 (3)	-0.004 (3)
C22	0.054 (4)	0.070 (4)	0.058 (3)	0.008 (3)	0.015 (3)	-0.003 (3)
C20	0.039 (3)	0.051 (3)	0.048 (3)	0.005 (3)	0.019 (2)	0.006 (2)
C19	0.058 (3)	0.048 (3)	0.042 (3)	0.007 (3)	0.013 (2)	0.002 (2)
Geometric para	meters (Å, °)					
O1—C20		1.386 (4)	C15	5—C14		1.379 (6)
O1—C2		1.392 (5)	C15	5—C18		1.534 (6)
C5—C4		1.410 (5)	C7-	—H7A		0.9300
C5—C6		1.422 (6)	C14	—H14A		0.9300
C5-C10		1.427 (5)	C18	3—H18A		0.9600
С10—С9		1.415 (5)	C18	3—H18B		0.9600
C10—C1		1.424 (5)	C18	3—H18C		0.9600
C1—C2		1.366 (5)	C16	б—Н16А		0.9300
C1—C11		1.498 (5)	C27	7—C28		1.364 (7)
C11—C19		1 495 (5)	C27	C_{20}^{i}		1 374 (7)
C11 C12		1.523 (5)	C27	—С29 Л. Н27 Л		0.9300
C11_U12		0.0800	C27	$= \frac{112}{A}$		1 353 (7)
C12 C13		1 369 (5)	C20	стория Справля страна Справля страна Справла Справла Справла Справля страна Справля страна Спра		0.0300
C12—C13		1.309 (3)	C26			1 274 (7)
C12—C17		1.375 (5)	C29	D-C27		1.3/4 (/)
C2—C3		1.405 (5)	C29	—Н29А		0.9300
C9—C8		1.376 (6)	C25	5—C24		1.363 (6)
С9—Н9А		0.9300	C25	5—C26		1.383 (5)
C3—C4		1.355 (5)	C25	5—H25A		0.9300
С3—НЗА		0.9300	C26	6—C21		1.372 (5)
C6—C7		1.361 (6)	C26	C26—H26A 0.93		0.9300
С6—Н6А		0.9300	C21	C21—C22 1.383		1.383 (5)
C4—H4A		0.9300	C21	C21—C20 1.		1.484 (5)
C8—C7		1.404 (6)	C23	3—C24		1.367 (6)
C8—H8A		0.9300	C23	3—C22		1.394 (5)
C13—C14		1.391 (6)	C23	В—Н23А		0.9300
C13—H13A		0.9300	C24	—H24А		0.9300
C17—C16		1.376 (5)	C22	2—H22A		0.9300
C17—H17A		0.9300	C20	—С19		1.325 (5)
C15—C16		1.372 (6)	C19	—Н19А		0.9300
C20—O1—C2		117.0 (3)	C6-	—С7—Н7А		119.9
C4—C5—C6		122.4 (5)	C8-	—С7—Н7А		119.9
C4—C5—C10		118.6 (4)	C15	5—C14—C13		120.9 (5)
C6-C5-C10		119.0 (5)	C15	5—C14—H14A		119.6
C9—C10—C1		121.6 (4)	C13	3—C14—H14A		119.6
C9—C10—C5		117.8 (4)	C15	5—C18—H18A		109.5
C1—C10—C5		120.6 (4)	C15	5—C18—H18B		109.5
C2-C1-C10		116.9 (4)	H18	3A—C18—H18B		109.5
C2-C1-C11		119.8 (4)	C15	5—C18—H18C		109.5
C10-C1-C11		123.3 (4)	H18	3A—C18—H18C		109.5

C19—C11—C1	109.1 (3)	H18B—C18—H18C	109.5
C19—C11—C12	111.7 (3)	C15—C16—C17	120.9 (5)
C1—C11—C12	111.9 (3)	C15—C16—H16A	119.5
C19—C11—H11A	108.0	C17—C16—H16A	119.5
C1	108.0	C28—C27—C29 ⁱ	118.3 (6)
C12—C11—H11A	108.0	C28—C27—H27A	120.8
C13—C12—C17	116.7 (4)	C29 ⁱ —C27—H27A	120.8
C13—C12—C11	121.7 (4)	C29—C28—C27	121.3 (6)
C17—C12—C11	121.6 (4)	C29—C28—H28A	119.4
C1—C2—O1	122.8 (4)	C27—C28—H28A	119.4
C1—C2—C3	123.6 (4)	C28—C29—C27 ⁱ	120.4 (6)
01—C2—C3	113.6 (4)	С28—С29—Н29А	119.8
C8—C9—C10	121.9 (5)	C27 ⁱ —C29—H29A	119.8
С8—С9—Н9А	119.1	C24—C25—C26	121.3 (5)
С10—С9—Н9А	119.1	C24—C25—H25A	119.4
C4—C3—C2	119.4 (4)	C26—C25—H25A	119.4
С4—С3—НЗА	120.3	C21—C26—C25	120.3 (5)
С2—С3—НЗА	120.3	C21—C26—H26A	119.8
C7—C6—C5	121.3 (5)	С25—С26—Н26А	119.8
С7—С6—Н6А	119.4	C26—C21—C22	118.7 (4)
С5—С6—Н6А	119.4	C26—C21—C20	121.2 (4)
C3—C4—C5	120.8 (4)	C22—C21—C20	120.1 (4)
С3—С4—Н4А	119.6	C24—C23—C22	120.3 (5)
С5—С4—Н4А	119.6	С24—С23—Н23А	119.8
C9—C8—C7	119.8 (5)	С22—С23—Н23А	119.8
С9—С8—Н8А	120.1	C25—C24—C23	119.1 (5)
С7—С8—Н8А	120.1	C25—C24—H24A	120.5
C12-C13-C14	121.6 (5)	C23—C24—H24A	120.5
C12—C13—H13A	119.2	C21—C22—C23	120.3 (5)
C14—C13—H13A	119.2	C21—C22—H22A	119.8
C12—C17—C16	122.3 (4)	C23—C22—H22A	119.8
С12—С17—Н17А	118.8	C19—C20—O1	120.9 (4)
С16—С17—Н17А	118.8	C19—C20—C21	128.3 (4)
C16-C15-C14	117.5 (4)	O1—C20—C21	110.8 (4)
C16—C15—C18	121.5 (5)	C20-C19-C11	123.8 (4)
C14-C15-C18	120.9 (5)	С20—С19—Н19А	118.1
C6—C7—C8	120.3 (5)	С11—С19—Н19А	118.1
Symmetry codes: (i) $-x+1, -y+2, -z+1$.			
Hydrogen-bond geometry (Å, °)			
	5 11		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C26—H26A…O1	0.93	2.34	2.692 (6)	102.

